Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2322688121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709925

RESUMO

Brain metastatic breast cancer is particularly lethal largely due to therapeutic resistance. Almost half of the patients with metastatic HER2-positive breast cancer develop brain metastases, representing a major clinical challenge. We previously described that cancer-associated fibroblasts are an important source of resistance in primary tumors. Here, we report that breast cancer brain metastasis stromal cell interactions in 3D cocultures induce therapeutic resistance to HER2-targeting agents, particularly to the small molecule inhibitor of HER2/EGFR neratinib. We investigated the underlying mechanisms using a synthetic Notch reporter system enabling the sorting of cancer cells that directly interact with stromal cells. We identified mucins and bulky glycoprotein synthesis as top-up-regulated genes and pathways by comparing the gene expression and chromatin profiles of stroma-contact and no-contact cancer cells before and after neratinib treatment. Glycoprotein gene signatures were also enriched in human brain metastases compared to primary tumors. We confirmed increased glycocalyx surrounding cocultures by immunofluorescence and showed that mucinase treatment increased sensitivity to neratinib by enabling a more efficient inhibition of EGFR/HER2 signaling in cancer cells. Overexpression of truncated MUC1 lacking the intracellular domain as a model of increased glycocalyx-induced resistance to neratinib both in cell culture and in experimental brain metastases in immunodeficient mice. Our results highlight the importance of glycoproteins as a resistance mechanism to HER2-targeting therapies in breast cancer brain metastases.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Glicocálix , Quinolinas , Receptor ErbB-2 , Células Estromais , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Glicocálix/metabolismo , Animais , Linhagem Celular Tumoral , Células Estromais/metabolismo , Células Estromais/patologia , Quinolinas/farmacologia , Camundongos , Comunicação Celular , Técnicas de Cocultura , Mucina-1/metabolismo , Mucina-1/genética , Transdução de Sinais , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores
2.
Biochem Biophys Res Commun ; 710: 149843, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38593617

RESUMO

The success rate of flap tissue reconstruction has increased in recent years owing to advancements in microsurgical techniques. However, complications, such as necrosis, are still more prevalent in diabetic patients compared to non-diabetic individuals, presenting an ongoing challenge. To address this issue, many previous studies have examined vascular anastomoses dilation and stability, primarily concerning surgical techniques or drugs. In contrast, in the present study, we focused on microvascular damage of the peripheral microvessels in patients with diabetes mellitus and the preventative impact of nafamostat mesylate. Herein, we aimed to investigate the effects of hyperglycemia on glycocalyx (GCX) levels in mice with type 2 diabetes. We examined the endothelial GCX (eGCX) in skin flap tissue of 9-12-week-old type 2 diabetic mice (db/db mice) using a perforator skin flap and explored treatment with nafamostat mesylate. The growth rates were compared after 1 week. Heterotype (db/+) mice were used as the control group. Morphological examination of postoperative tissues was performed at 1, 3, 5, and 7 days post-surgery. In addition, db/db mice were treated with 30 mg/kg/day of nafamostat mesylate daily and were evaluated on postoperative day 7. Seven days after surgery, all db/db mice showed significant partial flap necrosis. Temporal observation of the skin flaps revealed a stasis-like discoloration and necrosis starting from the contralateral side of the remaining perforating branch. The control group did not exhibit flap necrosis, and the flap remained intact. In the quantitative assessment of endothelial glycans using lectins, intensity scoring showed that the eGCX in the db/db group was significantly thinner than that in the db/+ group. These results were consistent with the scanning electron microscopy findings. In contrast, treatment with nafamostat mesylate significantly improved the flap engraftment rate and suppressed eGCX injury. In conclusion, treatment with nafamostat mesylate improves the disrupted eGCX structure of skin flap tissue in db/db mice, potentially ameliorating the impaired capillary-to-venous return in the skin flap tissue.


Assuntos
Benzamidinas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Guanidinas , Doenças Vasculares , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Glicocálix , Modelos Animais de Doenças , Camundongos Endogâmicos , Necrose/tratamento farmacológico
3.
Sci Signal ; 17(834): eadq0353, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687824

RESUMO

Displacement of the glycocalyx by membrane blebbing enables macrophages to recognize apoptotic cells.


Assuntos
Apoptose , Glicocálix , Macrófagos , Humanos , Glicocálix/metabolismo , Animais , Macrófagos/metabolismo , Macrófagos/citologia , Fagócitos/metabolismo , Fagócitos/citologia , Fagocitose , Camundongos
4.
Shock ; 61(5): 776-782, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517274

RESUMO

ABSTRACT: Background : This study aims to determine the impact and mechanism of miR-21-3p on intestinal injury and intestinal glycocalyx during fluid resuscitation in traumatic hemorrhagic shock (THS), and the different impacts of sodium lactate Ringer's solution (LRS) and sodium bicarbonate Ringer's solution (BRS) for resuscitation on intestinal damage. Methods : A rat model of THS was induced by hemorrhage from the left femur fracture. The pathological changes of intestinal tissues and glycocalyx structure were observed by hematoxylin-eosin staining and transmission electron microscope. MiR-21-3p expression in intestinal tissues was detected by real-time quantitative polymerase chain reaction. The expression of glycocalyx-, cell junction-, and PI3K/Akt/NF-κB signaling pathway-related proteins was analyzed by western blot. Results : MiR-21-3p expression was increased in THS rats, which was suppressed by resuscitation with BRS. BRS or LRS aggravated the intestinal injury and damaged intestinal glycocalyx in THS rats. The expression of SDC-1, HPA, ß-catenin, MMP2, and MMP9 was upregulated, the expression of E-cad was downregulated, and the PI3K/Akt/NF-κB signaling pathway was activated in THS rats, which were further aggravated by BRS or LRS. The adverse effect of LRS was more serious than BRS. MiR-21-3p overexpression deteriorated the injury of intestinal tissues and intestinal glycocalyx; increased the expression of SDC-1, HPA, ß-catenin, MMP2, and MMP9 while decreasing E-cad expression; and activated the PI3K/Akt/NF-κB signaling pathway in BRS-resuscitated THS rats. Conclusion : MiR-21-3p aggravated intestinal tissue injury and intestinal glycocalyx damage through activating PI3K/Akt/NF-κB signaling pathway in rats with THS resuscitated with BRS.


Assuntos
Intestinos , MicroRNAs , Solução de Ringer , Choque Hemorrágico , Animais , Masculino , Ratos , Glicocálix/efeitos dos fármacos , Glicocálix/metabolismo , Glicocálix/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Intestinos/patologia , Intestinos/efeitos dos fármacos , Intestinos/lesões , Soluções Isotônicas/farmacologia , Soluções Isotônicas/uso terapêutico , MicroRNAs/metabolismo , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Ressuscitação , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Choque Hemorrágico/complicações , Transdução de Sinais/efeitos dos fármacos , Bicarbonato de Sódio/uso terapêutico , Bicarbonato de Sódio/farmacologia , Solução de Ringer/farmacologia , Solução de Ringer/uso terapêutico
5.
Nat Mater ; 23(3): 429-438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361041

RESUMO

Cancer cell glycocalyx is a major line of defence against immune surveillance. However, how specific physical properties of the glycocalyx are regulated on a molecular level, contribute to immune evasion and may be overcome through immunoengineering must be resolved. Here we report how cancer-associated mucins and their glycosylation contribute to the nanoscale material thickness of the glycocalyx and consequently modulate the functional interactions with cytotoxic immune cells. Natural-killer-cell-mediated cytotoxicity is inversely correlated with the glycocalyx thickness of the target cells. Changes in glycocalyx thickness of approximately 10 nm can alter the susceptibility to immune cell attack. Enhanced stimulation of natural killer and T cells through equipment with chimeric antigen receptors can improve the cytotoxicity against mucin-bearing target cells. Alternatively, cytotoxicity can be enhanced through engineering effector cells to display glycocalyx-editing enzymes, including mucinases and sialidases. Together, our results motivate the development of immunoengineering strategies that overcome the glycocalyx armour of cancer cells.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Glicocálix/metabolismo , Mucinas/metabolismo , Antineoplásicos/metabolismo , Neoplasias/terapia
6.
BMC Anesthesiol ; 24(1): 76, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408904

RESUMO

BACGROUND: Off-pump coronary artery bypass graft (OPCABG) has a high incidence of postoperative systemic inflammation response syndrome (SIRS), and perioperative endothelial glycocalyx layer (EGL) disruption can be one of the predisposing factors. We hypothesized that EGL shedding happened earlier in OPCABG which can influence on postoperative SIRS, and sevoflurane might preserve EGL better than propofol. METHODS: We randomly allocated 50 patients undergoing OPCABG to receive either sevoflurane-sufentanil or propofol-sufentanil anesthesia. Plasma syndecan-1, heparan sulfate (HS), atrial natriuretic peptide (ANP), IL-6, and cardiac troponin I (cTnI) were measured. Blood samples were collected at 6 timepoints: induction (T1), before grafting (T2), after grafting(T3), surgery done (T4), postoperative day1 (POD1,T5) and POD2 (T6). SIRS criteria and sequential organ failure assessment (SOFA) score were examined. RESULTS: There were neither differences of syndecan-1, HS, IL-6 nor of SIRS criteria or SOFA score between the sevoflurane and propofol groups. All patients were pooled as a single group for further statistical analyses, plasma syndecan-1 (P < 0.001) and IL-6 (P < 0.001) increased significantly as a function of time; syndecan-1 increasing correlated significantly with the duration of coronary graft anastomosis (r = 0.329, P = 0.026). Syndecan-1(T3) correlated significantly with ANP(T3) (r = 0.0.354, P = 0.016) and IL-6 (T5) (r = 0.570, P < 0.001). The maximum value of IL-6 correlated significantly with SIRS (r = 0.378, P = 0.010), the maximum value of SOFA score (r = 0.399, P = 0.006) and ICU days (r = 0.306, P = 0.039). The maximum value of SOFA score correlated significantly with the occurrence of SIRS (r = 0.568, P < 0.001) and ICU days (r = 0.338, P = 0.022). CONCLUSIONS: OPCABG intraoperative early EGL shedding caused of grafts anastomosis greatly affected postoperative SIRS and SOFA score, sevoflurane did not clinically preserve EGL better. TRIAL REGISTRATION: ChiCTR-IOR-17012535. Registered on 01/09/2017.


Assuntos
Glicocálix , Propofol , Humanos , Sindecana-1 , Propofol/farmacologia , Sevoflurano , Sufentanil , Interleucina-6 , Inflamação , Síndrome de Resposta Inflamatória Sistêmica
7.
Int Immunopharmacol ; 129: 111603, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38310766

RESUMO

Acute lung injury (ALI) has received considerable attention in intensive care owing to its high mortality rate. It has been demonstrated that the selective alpha7 nicotinic acetylcholine receptor agonist Gainesville Tokushima scientists (GTS)-21 is promising for treating ALI caused by lipopolysaccharides (LPS). However, the precise underlying mechanism remains unknown. This study aimed to investigate the potential efficacy of GTS-21 in the treatment of ALI. We developed mouse models of ALI and alveolar epithelial type II cells (AT2s) injury following treatment with LPS and different polarized macrophage supernatants, respectively. Pathological changes, pulmonary edema, and lung compliance were assessed. Inflammatory cells count, protein content, and pro-inflammatory cytokine levels were analysed in the bronchoalveolar lavage fluid. The expression of angiotensin-converting enzyme (ACE), ACE2, syndecan-1 (SDC-1), heparan sulphate (HS), heparanase (HPA), exostosin (EXT)-1, and NF-κB were tested in lung tissues and cells. GTS-21-induced changes in macrophage polarization were verified in vivo and in vitro. Polarized macrophage supernatants with or without recombination a disintegrin and metalloproteinase-17 (ADAM-17) and small interfering (si)RNA ADAM-17 were used to verify the role of ADAM-17 in AT2 injury. By reducing pathological alterations, lung permeability, inflammatory response, ACE/ACE2 ratio, and glycocalyx shedding, as well as by downregulating the HPA and NF-κB pathways and upregulating EXT1 expression in vivo, GTS-21 significantly diminished LPS-induced ALI compared to that of the LPS group. GTS-21 significantly attenuated macrophage M1 polarization and augmented M2 polarization in vitro and in vivo. The destructive effects of M1 polarization supernatant can be inhibited by GTS-21 and siRNA ADAM-17. GTS-21 exerted a protective effect against LPS-induced ALI, which was reversed by recombinant ADAM-17. Collectively, GTS-21 alleviates LPS-induced ALI by attenuating AT2s ACE/ACE2 ratio and glycocalyx shedding through the inhibition of macrophage M1 polarization derived ADAM-17.


Assuntos
Lesão Pulmonar Aguda , Compostos de Benzilideno , Glicocálix , Piridinas , Animais , Camundongos , Lipopolissacarídeos , Proteína ADAM17 , Enzima de Conversão de Angiotensina 2 , NF-kappa B , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Pulmão
8.
Dev Cell ; 59(7): 853-868.e7, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38359833

RESUMO

Phagocytes remove dead and dying cells by engaging "eat-me" ligands such as phosphatidylserine (PtdSer) on the surface of apoptotic targets. However, PtdSer is obscured by the bulky exofacial glycocalyx, which also exposes ligands that activate "don't-eat-me" receptors such as Siglecs. Clearly, unshielding the juxtamembrane "eat-me" ligands is required for the successful engulfment of apoptotic cells, but the mechanisms underlying this process have not been described. Using human and murine cells, we find that apoptosis-induced retraction and weakening of the cytoskeleton that anchors transmembrane proteins cause an inhomogeneous redistribution of the glycocalyx: actin-depleted blebs emerge, lacking the glycocalyx, while the rest of the apoptotic cell body retains sufficient actin to tether the glycocalyx in place. Thus, apoptotic blebs can be engaged by phagocytes and are targeted for engulfment. Therefore, in cells with an elaborate glycocalyx, such as mucinous cancer cells, this "don't-come-close-to-me" barrier must be removed to enable clearance by phagocytosis.


Assuntos
Actinas , Glicocálix , Animais , Humanos , Camundongos , Glicocálix/metabolismo , Actinas/metabolismo , Fagócitos , Fagocitose/fisiologia , Ligantes , Apoptose/fisiologia , Fosfatidilserinas/metabolismo
11.
Microvasc Res ; 153: 104658, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38266910

RESUMO

Endothelial permeability deterioration is involved in ventilator-induced lung injury (VILI). The integrality of vascular endothelial glycocalyx (EG) is closely associated with endothelial permeability. The hypothesis was that vascular EG shedding participates in VILI through promoting endothelial permeability. In the present study, male Sprague-Dawley (SD) rats were ventilated with high tidal volume (VT =40 ml/kg) or low tidal volume (VT =8 ml/kg) to investigate the effects of different tidal volume and ventilation durations on EG in vivo. We report disruption of EG during the period of high tidal volume ventilation characterized by increased glycocalyx structural components (such as syndecan-1, heparan sulfate, hyaluronan) in the plasma and decreased the expression of syndecan-1 in the lung tissues. Mechanistically, the disruption of EG was associated with increased proinflammatory cytokines and matrix metalloproteinase in the lung tissues. Collectively, these results demonstrate that the degradation of EG is involved in the occurrence and development of VILI in rats, and the inflammatory mechanism mediated by activation of the NF-κB signaling pathway may be partly responsible for the degradation of EG in VILI in rats. This study enhances our understanding of the pathophysiological processes underlying VILI, shedding light on potential therapeutic targets to mitigate VILI.


Assuntos
Sindecana-1 , Lesão Pulmonar Induzida por Ventilação Mecânica , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Glicocálix/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Pulmão/metabolismo
12.
FEBS J ; 291(8): 1719-1731, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38275079

RESUMO

Trastuzumab is widely used in human epidermal growth factor receptor 2 (HER2)-positive gastric cancer (GC) therapy, but ubiquitous resistance limits its clinical application. In this study, we first showed that CD44 antigen is a significant predictor of overall survival for patients with HER2-positive GC. Next, we found that CD44 could be co-immunoprecipitated and co-localized with HER2 on the membrane of GC cells. By analyzing the interaction between CD44 and HER2, we identified that CD44 could upregulate HER2 protein by inhibiting its proteasome degradation. Notably, the overexpression of CD44 could decrease the sensitivity of HER2-positive GC cells to trastuzumab. Further mechanistic study showed that CD44 upregulation could induce its ligand, hyaluronan (HA), to deposit on the cancer cell surface, resulting in covering up the binding sites of trastuzumab to HER2. Removing the HA glycocalyx restored sensitivity of the cells to trastuzumab. Collectively, our findings suggested a role for CD44 in regulating trastuzumab sensitivity and provided novel insights into HER2-targeted therapy.


Assuntos
Ácido Hialurônico , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Glicocálix/metabolismo , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Trastuzumab/farmacologia
13.
Biomech Model Mechanobiol ; 23(1): 117-128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37704890

RESUMO

Many types of cancer cells overexpress bulky glycoproteins to form a thick glycocalyx layer. The glycocalyx physically separates the cell from its surroundings, but recent work has shown that the glycocalyx can paradoxically increase adhesion to soft tissues and therefore promote the metastasis of cancer cells. This surprising phenomenon occurs because the glycocalyx forces adhesion molecules (called integrins) on the cell's surface into clusters. These integrin clusters have cooperative effects that allow them to form stronger adhesions to surrounding tissues than would be possible with equivalent numbers of un-clustered integrins. These cooperative mechanisms have been intensely scrutinized in recent years. A more nuanced understanding of the biophysical underpinnings of glycocalyx-mediated adhesion could uncover therapeutic targets, deepen our general understanding of cancer metastasis, and elucidate general biophysical processes that extend far beyond the realm of cancer research. This work examines the hypothesis that the glycocalyx has the additional effect of increasing mechanical tension experienced by clustered integrins. Integrins function as mechanosensors that undergo catch bonding-meaning the application of moderate tension increases integrin bond lifetime relative to the lifetime of integrins experiencing low tension. In this work, a three-state chemomechanical catch bond model of integrin tension is used to investigate catch bonding in the presence of a bulky glycocalyx. A pseudo-steady-state approximation is applied, which relies on the assumption that integrin bond dynamics occur on a much faster timescale than the evolution of the full adhesion between the plasma membrane and the substrate. Force-dependent kinetic rate constants are used to calculate a steady-state distribution of integrin-ligand bonds for Gaussian-shaped adhesion geometries. The relationship between the energy of the system and adhesion geometry is then analyzed in the presence and absence of catch bonding in order to evaluate the extent to which catch bonding alters the energetics of adhesion formation. This modeling suggests that a bulky glycocalyx can lightly trigger catch bonding, increasing the bond lifetime of integrins at adhesion edges by up to 100%. The total number of integrin-ligand bonds within an adhesion is predicted to increase by up to ~ 60% for certain adhesion geometries. Catch bonding is predicted to decrease the activation energy of adhesion formation by ~ 1-4 kBT, which translates to a ~ 3-50 × increase in the kinetic rate of adhesion nucleation. This work reveals that integrin mechanics and clustering likely both contribute to glycocalyx-mediated metastasis.


Assuntos
Glicocálix , Integrinas , Integrinas/metabolismo , Glicocálix/metabolismo , Ligantes , Membrana Celular/metabolismo , Ligação Proteica , Adesão Celular/fisiologia
14.
Br J Pharmacol ; 181(9): 1404-1420, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37994102

RESUMO

BACKGROUND AND PURPOSE: Diabetic vascular complication is a leading cause of disability and mortality in diabetes patients. Low molecular weight fucoidan (LMWF) is a promising drug candidate for vascular complications. Glycocalyx injury predates the occurrence of diabetes vascular complications. Protecting glycocalyx from degradation relieves diabetic vascular complications. LMWF has the potential to protect the diabetes endothelial glycocalyx from shedding. EXPERIMENTAL APPROACH: The protective effect of LMWF on diabetic glycocalyx damage was investigated in db/db mice and Human Umbilical Vein Endothelial Cells (HUVEC) through transmission electron microscopy and WGA labelling. The effect of LMWF on glycocalyx degrading enzymes expression was investigated. Neuraminidase2 (NEU2) overexpression/knockdown was performed in HUVECs to verify the important role of NEU2 in glycocalyx homeostasis. The interaction between NEU2 and LMWF was detected by ELISA and surface plasmon resonance analysis (SPR). KEY RESULTS: LMWF normalizes blood indexes including insulin, triglyceride, uric acid and reduces diabetes complications adverse events. LMWF alleviates diabetic endothelial glycocalyx damage in db/db mice kidney/aorta and high concentration glucose treated HUVECs. NEU2 is up-regulated in db/db mice and HUVECs with high concentration glucose. Overexpression/knockdown NEU2 results in glycocalyx shedding in HUVEC. Down-regulation and interaction of LMWF with NEU2 is a new therapy target in glycocalyx homeostasis. NEU2 was positively correlated with phosphorylated IR-ß. CONCLUSION AND IMPLICATIONS: NEU2 is an effective target for glycocalyx homeostasis and LMWF is a promising drug to alleviate vascular complications in diabetes by protecting endothelial glycocalyx.


Assuntos
Antineoplásicos , Diabetes Mellitus , Angiopatias Diabéticas , Polissacarídeos , Camundongos , Animais , Humanos , Glicocálix , Peso Molecular , Células Endoteliais da Veia Umbilical Humana , Glucose
15.
Can J Anaesth ; 71(2): 244-253, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989943

RESUMO

PURPOSE: The integrity of the endothelial glycocalyx (EG), a critical player in vascular homeostasis, reportedly influences the outcomes of critically ill patients. We investigated the effect of 5% albumin, which preserved EG integrity in preclinical studies, vs balanced crystalloid solution on EG degradation in patients undergoing off-pump coronary surgery. METHODS: Patients were randomized to receive either 5% albumin (N = 51) or balanced crystalloid solution (Plasma-Lyte [Baxter Incorporated, Seoul, Republic of Korea]; N = 53) for intravenous volume replacement during surgery (double-blinded). The primary outcome was plasma syndecan-1 concentration, a marker of EG degradation, measured after anesthetic induction (baseline), completion of grafting, and sternal closure. Secondary outcomes were atrial natriuretic peptide (ANP), tumour necrosis factor (TNF)-α, soluble thrombomodulin, and perioperative fluid balance. RESULTS: The mean (standard deviation) fluid requirements were 833 (270) mL and 1,323 (492) mL in the albumin and Plasma-Lyte group, respectively (mean difference, -489 mL; 95% confidence interval [CI], -643 to -335; P < 0.001). Plasma syndecan-1 concentration increased after completion of grafting (median difference, 116 ng·mL-1; 95% CI, 67 to 184; P < 0.001) and sternal closure (median difference, 57 ng·mL-1; 95% CI, 36 to 80; P < 0.001) compared with those at baseline, without any intergroup differences. Atrial natriuretic peptide, TNF-α, and soluble thrombomodulin concentrations were similar between the two groups. The amount of chest tube drainage was greater in the albumin group than that in the Plasma-Lyte group (median difference, 190 mL; 95% CI, 18 to 276; P = 0.03). CONCLUSION: Off-pump coronary surgery was associated with significant EG degradation. Yet, intraoperative fluid therapy with 5% albumin could not ameliorate EG degradation when compared with balanced crystalloid solution. TRIAL REGISTRATION: ClinicalTrials.gov (NCT03699462); first posted 9 October 2018.


RéSUMé: OBJECTIF: L'intégrité du glycocalyx endothélial (GE), un acteur essentiel de l'homéostasie vasculaire, influencerait le devenir des patient·es gravement malades. Nous avons étudié l'effet de l'albumine à 5 %, qui préservait l'intégrité du GE dans les études précliniques, par rapport à une solution cristalloïde équilibrée sur la dégradation du GE chez les patient·es bénéficiant d'une chirurgie coronarienne à cœur battant. MéTHODE: Les patient·es ont été randomisé·es à recevoir soit de l'albumine à 5 % (N = 51) ou de la solution cristalloïde équilibrée (Plasma-Lyte [Baxter Incorporated, Séoul, République de Corée]; N = 53) pour le remplacement du volume intraveineux pendant la chirurgie (en double aveugle). Le critère d'évaluation principal était la concentration plasmatique de syndécan-1, un marqueur de la dégradation du GE, mesurée après l'induction de l'anesthésie (ligne de base), la fin de la greffe et la fermeture du sternum. Les critères d'évaluation secondaires étaient le peptide natriurétique auriculaire (ANP), le facteur de nécrose tumorale (TNF)-α, la thrombomoduline soluble et le bilan hydrique périopératoire. RéSULTATS: Les besoins liquidiens moyens (écart type) étaient de 833 (270) mL et 1323 (492) mL dans les groupes albumine et Plasma-Lyte, respectivement (différence moyenne, −489 mL; intervalle de confiance [IC] à 95 %, −643 à −335; P < 0,001). La concentration plasmatique de syndécan-1 a augmenté après la fin de la greffe (différence médiane, 116 ng·mL−1; IC 95 %, 67 à 184; P < 0,001) et la fermeture du sternum (différence médiane, 57 ng·mL−1; IC 95 %, 36 à 80; P < 0,001) par rapport aux concentrations au départ, sans différences intergroupe. Les concentrations de peptide natriurétique auriculaire, de TNF-α et de thrombomoduline soluble étaient similaires entre les deux groupes. La quantité de drainage du drain thoracique était plus importante dans le groupe albumine que dans le groupe Plasma-Lyte (différence médiane, 190 mL; IC 95 %, 18 à 276; P = 0,03). CONCLUSION: La chirurgie coronarienne à cœur battant a été associée à une dégradation significative du glycocalyx endothélial. Pourtant, la fluidothérapie peropératoire avec 5 % d'albumine n'a pas pu améliorer la dégradation du GE par rapport à une solution cristalloïde équilibrée. ENREGISTREMENT DE L'éTUDE: ClinicalTrials.gov (NCT03699462); enregistrée pour la première fois le 9 octobre 2018.


Assuntos
Ponte de Artéria Coronária sem Circulação Extracorpórea , Humanos , Ponte de Artéria Coronária sem Circulação Extracorpórea/efeitos adversos , Sindecana-1/metabolismo , Fator Natriurético Atrial/metabolismo , Trombomodulina/metabolismo , Glicocálix/metabolismo , Soluções Cristaloides , Albuminas , Cloreto de Magnésio , Gluconatos , Acetato de Sódio , Cloreto de Potássio , Cloreto de Sódio
16.
Surgery ; 175(3): 613-617, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37863690

RESUMO

BACKGROUND: The endothelial glycocalyx is a critical component of the vascular barrier; its disruption after shock states may contribute to coagulopathy in a variety of conditions. Measurement of glycocalyx components in plasma have been used to index glycocalyx degradation but are not available as a point of care test. Heparanoids, such as heparan sulfate, may affect coagulation which may be detected by either thromboelastography or activated clotting time. METHODS: Endothelial glycocalyx components syndecan-1 and heparan sulfate were added to blood samples at clinically relevant concentrations. Thromboelastography values included clot reaction time, clot amplification and fibrinogen values, and maximum clot strength (maximum amplitude, platelets). The heparinase thromboelastography cartridge was used to detect a heparin-like effect. The activated clotting time test was performed subsequently using the heparan sulfate blood samples to compare a standard coagulation test with thromboelastography clot reaction times. RESULTS: Both thromboelastography clot reaction time (with comparison to heparinase) and activated clotting time were useful to detect effects of coagulation. Thromboelastography also detected platelet and fibrinogen abnormalities at higher heparan sulfate concentrations. Studies using thromboelastography or even activated clotting time may be useful to detect glycocalyx degradation after shock states and may guide clinical decision making. CONCLUSION: Thromboelastography and or activated clotting time may be useful to detect glycocalyx degradation as a point of care test in patients in the acute setting. Additionally, these assays may detect previous undisclosed coagulopathy due to glycocalyx degradation.


Assuntos
Transtornos da Coagulação Sanguínea , Tromboelastografia , Humanos , Glicocálix/metabolismo , Heparina Liase/metabolismo , Transtornos da Coagulação Sanguínea/diagnóstico , Transtornos da Coagulação Sanguínea/etiologia , Fibrinogênio , Heparitina Sulfato/metabolismo
17.
PLoS One ; 18(12): e0295862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38113214

RESUMO

Cardiopulmonary bypass (CPB) causes systemic inflammation and endothelial glycocalyx damage. Hydrogen has anti-oxidant and anti-inflammatory properties; therefore, we hypothesized that hydrogen would alleviate endothelial glycocalyx damage caused by CPB. Twenty-eight male Sprague-Dawley rats were randomly divided into four groups (n = 7 per group), as follows: sham, control, 2% hydrogen, and 4% hydrogen. The rats were subjected to 90 minutes of partial CPB followed by 120 minutes of observation. In the hydrogen groups, hydrogen was administered via the ventilator and artificial lung during CPB, and via the ventilator for 60 minutes after CPB. After observation, blood collection, lung extraction, and perfusion fixation were performed, and the heart, lung, and brain endothelial glycocalyx thickness was measured by electron microscopy. The serum syndecan-1 concentration, a glycocalyx component, in the 4% hydrogen group (5.7 ± 4.4 pg/mL) was lower than in the control (19.5 ± 6.6 pg/mL) and 2% hydrogen (19.8 ± 5.0 pg/mL) groups (P < 0.001 for each), but it was not significantly different from the sham group (6.2 ± 4.0 pg/mL, P = 0.999). The endothelial glycocalyces of the heart and lung in the 4% hydrogen group were thicker than in the control group. The 4% hydrogen group had lower inflammatory cytokine concentrations (interleukin-1ß and tumor necrosis factor-α) in serum and lung tissue, as well as a lower serum malondialdehyde concentration, than the control group. The 2% hydrogen group showed no significant difference in the serum syndecan-1 concentration compared with the control group. However, non-significant decreases in serum and lung tissue inflammatory cytokine concentrations, as well as in serum malondialdehyde concentration, were observed. Administration of 4% hydrogen via artificial and autologous lungs attenuated endothelial glycocalyx damage caused by partial CPB in rats, which might be mediated by the anti-inflammatory and anti-oxidant properties of hydrogen.


Assuntos
Ponte Cardiopulmonar , Sindecana-1 , Ratos , Masculino , Animais , Ponte Cardiopulmonar/efeitos adversos , Ratos Sprague-Dawley , Hidrogênio , Glicocálix , Antioxidantes , Citocinas , Anti-Inflamatórios , Malondialdeído
18.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003732

RESUMO

Peritubular capillary rarefaction is a recurrent aspect of progressive nephropathies. We previously found that peritubular capillary density was reduced in BTBR ob/ob mice with type 2 diabetic nephropathy. In this model, we searched for abnormalities in the ultrastructure of peritubular capillaries, with a specific focus on the endothelial glycocalyx, and evaluated the impact of treatment with an angiotensin-converting enzyme inhibitor (ACEi). Mice were intracardially perfused with lanthanum to visualise the glycocalyx. Transmission electron microscopy analysis revealed endothelial cell abnormalities and basement membrane thickening in the peritubular capillaries of BTBR ob/ob mice compared to wild-type mice. Remodelling and focal loss of glycocalyx was observed in lanthanum-stained diabetic kidneys, associated with a reduction in glycocalyx components, including sialic acids, as detected through specific lectins. ACEi treatment preserved the endothelial glycocalyx and attenuated the ultrastructural abnormalities of peritubular capillaries. In diabetic mice, peritubular capillary damage was associated with an enhanced tubular expression of heparanase, which degrades heparan sulfate residues of the glycocalyx. Heparanase was also detected in renal interstitial macrophages that expressed tumor necrosis factor-α. All these abnormalities were mitigated by ACEi. Our findings suggest that, in experimental diabetic nephropathy, preserving the endothelial glycocalyx is important in order to protect peritubular capillaries from damage and loss.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Capilares/patologia , Glicocálix/metabolismo , Lantânio , Rim/patologia , Camundongos Endogâmicos
19.
Biophys J ; 122(22): 4425-4439, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37992690

RESUMO

Mechanisms by which electric (E) or magnetic (B) fields might be harnessed to affect tumor cell behavior remain poorly defined, presenting a barrier to translation. We hypothesized in early studies that the glycocalyx of lung cancer cells might play a role in mediating plasma membrane leak by low-frequency pulsed magnetic fields (Lf-PMF) generated on a low-energy solenoid platform. In testing glioblastoma and neuroblastoma cells known to overexpress glycoproteins rich in modifications by the anionic glycan sialic acid (Sia), exposure of brain tumor cells on the same platform to a pulse train that included a 5 min 50Hz Lf-PMF (dB/dt ∼ 2 T/s at 10 ms pulse widths) induced a very modest but significant protease leak above that of control nonexposed cells (with modest but significant reductions in long-term tumor cell viability after the 5 min exposure). Using a markedly higher dB/dt system (80 T/s pulses, 70 µs pulse-width at 5.9 cm from a MagVenture coil source) induced markedly greater leak by the same cells, and eliminating Sia by treating cells with AUS sialidase immediately preexposure abrogated the effect entirely in SH-SY5Y neuroblastoma cells, and partially in T98G glioblastoma cells. The system demonstrated significant leak (including inward leak of propidium iodide), with reduced leak at lower dB/dt in a variety of tumor cells. The ability to abrogate Lf-PMF protease leak by pretreatment with sialidase in SH-SY5Y brain tumor cells or with heparin lyase in A549 lung tumor cells indicated the importance of heavy Sia or heparan sulfate glycosaminoglycan glycocalyx modifications as dominant glycan species mediating Lf-PMF membrane leak in respective tumor cells. This "first-physical" Lf-PMF tumor glycocalyx event, with downstream cell stress, may represent a critical and "tunable" transduction mechanism that depends on characteristic anionic glycans overexpressed by distinct malignant tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neuroblastoma , Humanos , Glicocálix/metabolismo , Neuraminidase , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Campos Magnéticos , Linhagem Celular Tumoral , Ácido N-Acetilneuramínico/metabolismo , Peptídeo Hidrolases , Polissacarídeos
20.
J Reprod Immunol ; 160: 104161, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37857160

RESUMO

The etiology of the pregnancy syndrome preeclampsia is still unclear, while most hypotheses center on the placenta as the major contributor of the syndrome. Especially changes of the placental metabolism, including the use of glucose to produce energy, are important features. As an example, inositol phosphoglycan P-type molecules, second messengers involved in the glucose metabolism of all cells, can be retrieved from maternal urine of preeclamptic women, even before the onset of clinical symptoms. Alterations in the placental metabolism may subsequently lead to negative effects on the plasma membrane of the placental syncytiotrophoblast. This in turn may have deleterious effects on the glycocalyx of this layer and a disruption of this layer in all types of preeclampsia. The interruption of the glycocalyx in preeclampsia may result in changes of inositol phosphoglycan P-type signaling pathways and the release of these molecules as well as the release of soluble receptors such as sFlt-1 and sEndoglin. The release of placental factors later affects the maternal endothelium and disrupts the endothelial glycocalyx as well. This in turn may pave the way for edema, endothelial dysfunction, coagulation, all typical symptoms of preeclampsia.


Assuntos
Placenta , Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Glicocálix/metabolismo , Endotélio , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA